SSAP2: Smart Ship Application Platform 2 Project

Japan Ship Machinery & Equipment Association
SSAP2 Project

Hideyuki Ando
MTI

Background

- Onboard and ashore IoT application services, which relies on ship onboard equipment data, have become prevalent.
  - Weather routing
  - Optimum trim
  - Performance monitoring
  - Engine monitoring
  - Condition monitoring
  - Power plant energy management
  - Remote maintenance
Smart Ship and SSAP

- The concept of Smart Ship is to utilize IoT application services to achieve optimum ship operation in terms of safety and energy efficiency.

- The target of SSAP (SSAP & SSAP2) project is to support these IoT application services to access ship equipment data easily and enhance more application services development.

---

IoT (Internet of Things)

"Operation Technology (OT)" and "Information Technology (IT)" are to be bridged. The era of "transparency" where user can access field data.
Coming IoT applications in marine industry

**Target**
- Prevent unpredicted downtime
- Reduce maintenance cost
- Energy efficiency in operation

**Measure**
- Condition monitoring
- Big data analysis
- Support service engineer
- Intelligent machinery
  - Self diagnostics

**Working style will be changed**

---

**IoT and Big data applications**

<table>
<thead>
<tr>
<th>Role</th>
<th>Function</th>
<th>Example of IoT and Big data application</th>
</tr>
</thead>
</table>
| **Ship owner**  | Technical management | • Safety operation  
|                 |            | • Condition monitoring & maintenance  
|                 |            | • Environmental regulation compliance  
|                 |            | • Hull & propeller cleaning  
|                 |            | • Retrofit & modification                                                                        |
| **New building**|            | • Design optimization                                                                             |
| **Ship operator**| Operation  | • Energy saving operation  
|                 |            | • Safe operation  
|                 |            | • Schedule management                                                                            |
| **Fleet planning**|            | • Fleet allocation  
|                 |            | • Service planning  
|                 |            | • Chartering                                                                                  |

Other partners in value chains, such as cargo owners, shipyards, manufacturers, class societies, have also interests in ship Big data. With acceptance of IoT data owner, normally ship owner, Ship IoT will become prevalent.
**IoT application installation (now)**

- **IoT application (onboard and shore)**
  - Optimum Trim
  - Performance Monitoring
  - Weather Routing
  - Engine Monitoring
  - Remote Maintenance
  - Energy Efficient Autopilot
  - ECDIS
  - VDR
  - Engine Data Logger
  - Ballast Control System

  Similar data are sent to shore from each onboard software.

**IoT application installation (future - SSAP2 target)**

- **IoT application (onboard and shore)**
  - Optimum Trim
  - Performance Monitoring
  - Weather Routing
  - Engine Monitoring
  - Remote Maintenance
  - Energy Efficient Autopilot
  - ECDIS
  - VDR
  - Engine Data Logger
  - Ballast Control System

  Onboard equipment Cabling and interfacing one by one.

**Ship Equipment LAN for IoT Application**

**Shipboard data server**

**Ship Equipment LAN**

- ECDIS
- VDR
- Engine Data Logger
- Ballast Control System
What are the benefits of such platform?

- Application providers can easily provide onboard and shore application software / services
- Equipment manufacturers can easily provide their services, such as remote maintenance -> Ship owners can get remote maintenance supports directly from manufacturers
- Ship owners investment cost (CAPEX and OPEX) for onboard applications and shore services will be lower -> more big data applications will be used
- Shipyards and equipment manufactures can collect data from running equipment -> better understanding for service performances
- Ship owners can manage/control ship data transmission to shore
- Standardized format and protocol will enhance application development
SSAP Project (Dec 2012 – Mar 2015)

• Participants
  – Members: 27 organizations
  – Observers: 9 organizations

• Joint Industry Project (JIP) supported by JSMEA + ClassNK

• Achievements
  – Design specification of shipboard data server
  – Implementation of shipboard data server and trials on 2 domestic vessels
  – Ship – shore open platform design for ship IoT
  – Proposed 2 ISO NPs (ISO NP19847 / ISO NP19848)

Onboard trials in SSAP (2014)

RORO Ferry
SUNFLOWER SHIRETOKO

Crude-Oil Tanker
SHINKYOKUTO MARU
SSAP2 Project
(Smart Ship Application Platform 2 Project)

- Participants
  - 34 members + 9 observers

- Schedule

- Action items
  1. Promotion of SSAP2 concept
  2. System design and prototyping of SSAP2
  3. Standardization – ISO WD19847/WD19848
  4. Public relations

Organization of SSAP2 Project
ISO WD 19847
Shipboard data servers to share field data on the sea

- Requirements for shipboard data server

<table>
<thead>
<tr>
<th>Input (Client side ISO19848)</th>
<th>Shipboard data server ISO19847</th>
<th>Output (Client side ISO19848)</th>
</tr>
</thead>
<tbody>
<tr>
<td>shipboard system</td>
<td>Numerical value, String, State, Configurations, (File)</td>
<td>shipboard system</td>
</tr>
<tr>
<td>Shipboard equipment</td>
<td>Numerical value, State,</td>
<td>Numerical value, String, State, Configurations, (File)</td>
</tr>
<tr>
<td></td>
<td>State serial,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Converter Ethernet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Information, File</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODBUS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Storage (Min. 1 month)</td>
<td>shipboard system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO19848</td>
<td>Ethernet</td>
</tr>
<tr>
<td></td>
<td>IEC61162-1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTP/SMB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BINARY/FILE</td>
<td></td>
</tr>
</tbody>
</table>

**JSMEA**
Japan Ship Machinery and Equipment Association
ISO WD 19848
Standard data for shipboard machinery and equipment

- Data channel
- Time series data
- Data format
  - Data channel list
  - Time series data

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Data Channel A</th>
<th>Data Channel B</th>
<th>Data Channel C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.1</td>
<td>LowTemp</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>15</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Policy of standardization

- Corroborate and harmonize with
  - Existing standards
    - IEC61162-450/460 (Digital Interface – Part 450 Multiple taker and multiple listeners – Ethernet interconnection)
    - ISO16425 (Guidelines for the installation of ship communication networks for shipboard equipment and systems)
  - New proposed standards
    - IHO S-100series
    - IEC BAM (Bridge alert management – Operational and performance requirements, methods of testing and required test results)
  - Associated projects / Organization
    - e-Navigation (IALA)
    - SMART-Navigation (Korea)
    - IEC etc.,
  - Cyber Security discussions
Process for ISO (ISO WD19847, ISO WD19848) *

- ISO PWI 19847/19848 were accepted as NP in Aug 2015
- 2 WDs were finalized WD in Feb 2016 and are currently under review by international experts
- The first ISO/TC8/SC6/WG16 meeting will be held in June in Tokyo

Ship–shore open platform for Ship IoT

Ship-shore open platform provides good security and access control to enhance cooperation with industry partners for utilizing Ship IoT data.
Ship Data Center at Shore

Ship data center provides a platform to access ship IoT data safely, easily and reasonably. With the platform, utilizations of ship IoT data at shore will become much easier and it will enhance development and operation of ship IoT application services.

API with access control provides ship IoT data to application services.

Each software or system has its specific data format. SDC convert them to the standardized ISO format.

Use Case Scenarios of Ship Data Center

- **Shipping**
  - Safety operation
  - Vessel performance analysis
  - Fleet operation optimization
  - Weather routing

- **Shipyard**
  - In-service performance analysis of delivered ships
  - Feedback to new ship design

- **Maker**
  - Remote condition monitoring
  - Remote diagnostics
  - After service support

**Class Society**
- Utilization in class inspection

**Software vendor**
- Application services

**Insurance/Bank**
- New services

Ship Data Center
**Summary**

- JSMEA, Class NK, 34 member organizations and 9 observers are working together as SSAP2 (Smart Ship Application Platform 2) Project

- The aim of SSAP2 Project is to design and to implement an open platform for supporting Ship IoT service development and operation

- SSAP2 follows up ISO WD 19847/WD 19848 standardization process

- Ship Data Center is a platform for shore side Ship IoT applications. SSAP2 work closely with Ship Data Center to achieve the open platform concept.
Thank you very much for your attention

For further information, please contact

Mr. Hirofumi Kodama, kodama@jsmea.or.jp
Mr. Takachika Bunya, bunya@jsmea.or.jp

TEL: +81-3-3502-2041

JSMEA, Japan Ship Machinery and Equipment Association